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It is shown that for monolayer graphene electrons are confined on a perfect two-dimensional surface. The
implications for the electronic properties of corrugated graphene are discussed in view of a derivation of the
constrained relativistic dynamics for the massless carriers in two dimensions in accord with the Heisenberg
uncertainty principle. Surface curvature is related to a series of phenomena with practical applications such as
curvature induced p-n junctions, band-gap opening, and decoherence. We also establish a bending free energy
by treating graphene as a soft electronic membrane.
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I. INTRODUCTION

The two-dimensional form of sp2 hybridized carbon,
graphene, is a flexible one-atom-thick soft membrane em-
bedded in three-dimensional space. Due to an anharmonic
�nonlinear� coupling between bending and stretching phonon
modes,1 it comes with ripples whose typical height scales
with sample size L as Lt, with t=0.6. Besides providing
structural stability, ripples also play an important role in
graphene’s electronic properties.2 Graphene has two atoms
per unit cell, which results in two conical points K and K�
per Brillouin zone where band crossing occurs,3 see Fig. 1.
Near these crossing points, the electron energy is linearly
dependent on the wave vector, see Fig. 2. This behavior is
robust with respect to long-range hopping processes beyond
simple nearest-neighbor, tight-binding approximation4 be-
cause it follows from symmetry considerations.7 Here we
consider the constrained relativistic problem for the carriers
in two dimensions and discuss the effects that arise from the
emergence of a geometry induced potential VG on the elec-
tronic properties.

The effect of random surface curvature ripples on the
electronic properties of monolayer graphene is primarily de-
scribed via gauge potentials.8 However, the effect of geom-
etry induced potential à la da Costa9 in monolayer graphene
has not been investigated. The effect of geometric potential
for bilayer graphene is discussed in Ref. 10 but in this case
the quantum problem is not relativistic. Indeed, a rigorous
derivation of the effect curvature ripples have on the spec-
trum of the surface carriers, electrons and holes, confined on
monolayer graphene requires a consistent confining proce-
dure for massless Dirac fermions onto a surface embedded in
three-dimensional space, which we present here.

Low-dimensional systems are realized by constraints �ho-
lonomic or nonholonomic� that classically reduce the degrees
of freedom available for the particle, namely, in two-
dimensional electron �or hole� systems �2DESs�, typically
realized in III-V semiconductor heterojunctions.11 The bar-
rier potential at the heterojunction interface, created by dif-
fering electron affinities, leads to a clear separation of energy
scales for the motion in the 2D plane and motion along the
direction normal to the plane. Thus the particle’s wave func-

tion is separable into normal and surface components and, at
low energies, dominated by the surface component.12 Con-
straints can thus be realized by introducing external poten-
tials forcing the system to occupy less degrees of freedom.13

The confining procedure employed here for exploring the
electronic properties of graphene goes beyond the standard
analysis of the Dirac equation in curved geometries.14 Our
motivation can be traced back to the subject of what exactly
the two-dimensional Schrödinger equation should look like
on a curved surface. One is tempted to write the two-
dimensional Laplace-Beltrami operator for the kinetic part
and add potential terms if specified. Such an equation is in-
deed covariant. On the other hand the wave function of a
Schrödinger particle is always three dimensional due to the
Heisenberg uncertainty principle which forbids setting any of
the coordinates to zero �this would lead to indefiniteness in
the momentum according to �p�� / �2�x��. In this way any
two-dimensional quantum motion would have an evanescent
off-surface component of the wave function which can probe
the two-dimensional surface for curvature.9 Effectively this
means that one has to use a constraining procedure which
starts from three dimensions and gradually confines the
quantum dynamics onto the surface. Just postulating a two-
dimensional quantum equation is not sufficient since the

FIG. 1. �Color online� Left: the lattice structure of graphene is
comprised of two interpenetrating triangular lattices A and B with
lattice unit vectors a1 and a2. Right: the Brillouin zone where the
Dirac cones are located, K and K�. The reciprocal-lattice vectors are
b1 and b2.

PHYSICAL REVIEW B 81, 205409 �2010�

1098-0121/2010/81�20�/205409�8� ©2010 The American Physical Society205409-1

http://dx.doi.org/10.1103/PhysRevB.81.205409


Heisenberg uncertainty principle is undesirably violated.
Here we explore the Dirac equation for the carriers on
graphene in a manner consistent with the uncertainty prin-
ciple.

The quantum properties of a nonrelativistic particle con-
strained to an arbitrary orientable surface are known:9 the
geometry of the surface induces an attractive geometric po-
tential in the Schrödinger equation in curvilinear surface co-
ordinates

VdaCosta�q1,q2� = −
�2

8m
��1 − �2�2, �1�

where m is the effective mass of the particle, � is Planck’s
constant, �q1 ,q2� denote surface coordinates, and
�1�q1 ,q2� , �2�q1 ,q2� are the two position-dependent princi-
pal curvatures of the surface. For example, if the surface is a
cylinder it is “woven” by two families of space curves—
circles and straight lines both passing through each point on
the surface. The curvature along the straight lines vanishes
while the curvature along the circles is a constant 1 /R, where
R is the radius of the cylinder. The potential would be
VdaCosta=−��2 /8mR2�. Similarly, the surface of a sphere is
woven by two families of circles with �1=�2=1 /R implying
VdaCosta=0.

The da Costa potential �Eq. �1�� is purely a result of par-
ticle confinement and is independent of the electric charge of
the particle; it is therefore the same for electrons and holes.
This result is applicable in the limit

�0� → 0, �2�

where �0 is the thickness of the two-dimensional surface and

� = max��1,�2� �3�

is the bigger of the two principal curvatures of the surface.
Here �0 will correspond to the width of the normal to the
surface of the quantum well in 2DES where particles are
confined. However, absent a truly two-dimensional system
that can be easily bent, the effect of geometric potential on

the electronic band structure has been justifiably ignored in
device engineering up to now. Graphene represents a unique
material which can exhibit the effects produced by the geo-
metric potential.

In this paper we carry out a similar confining procedure
for the relativistic carriers in graphene. The two distinct ef-
fects produced by curvature in the Dirac equation remain
valid,14 namely, �a� the covariant derivative induces an effec-
tive magnetic field �the spin connection� and �b� the Pauli
matrices in the curved region modify the Fermi velocity
which becomes position dependent. The effect of the confin-
ing procedure is in the modification of the gauge field due to
the spin connection arising from the contributions related to
the off-surface dimension. The gauge field now has a simple
form and scales linearly with the curvature of the surface.

Curving graphene can have three major microscopic ef-
fects: �i� changing the distance between carbon atoms, which
modifies the hopping amplitude between neighboring sites
and is, in general, very costly due to the large spring constant
of graphene �57 eV /Å;15 �ii� a rotation of the pz orbitals,
and �iii� rehybridization between � and � orbitals.16 Curva-
ture in sp2 hybridized carbon allotropes also modifies the
Raman spectra through exerting strain in the underlying
lattice.17 The rotation between the orbitals can be understood
within the Slater-Koster formalism.16,18 When � orbitals are
not parallel the hybridization between them depends on their
relative orientation, which is a function of local curvature.
Furthermore, rotation leads to rehybridization between � and
� orbitals which shifts the energy even further. As a result,
Dirac fermions are scattered by ripples and curved regions
through a geometric potential VG which is derived in Sec. III.
Section II discusses the geometric mechanism which shifts
the Fermi energy thus leading to the emergence of p-n junc-
tions in monolayer graphene akin to the case of bilayer
graphene.10 Section IV deals with periodic corrugations
which produce an energy-band spectrum. In Sec. V we pose
the inverse problem, that is, how to engineer surfaces with
prescribed quantum behavior. In Sec. VI the membrane as-
pect of graphene is discussed in view of the constrained two-
dimensional Dirac equation derived in Sec. III. In Sec. VII
we summarize our main findings.

II. p-n JUNCTIONS

In this paper, we argue that due to its essentially two-
dimensional nature �0�→0, gapless linear band structure,
and exceptional material strength, monolayer graphene pre-
sents an excellent candidate for exploration of two-
dimensional systems with curvature. Dimensional analysis
implies that for graphene,10 the geometric potential VG must
scale as

VG � − �vF	�	 , �4�

where vF�c /300 is the Fermi velocity of massless carriers
in graphene.19 Here c is the velocity of light in vacuum.

Now, let us discuss the applicability of a constraining pro-
cedure to monolayer graphene. To map a curved monolayer
graphene sheet on a relativistic quantum problem for a par-
ticle on a curved surface, two criteria must be satisfied,10

FIG. 2. Left: the electronic structure of graphene �Ref. 4� E	

= 	 t
3+ f�k��− t�f�k��, where f�k��=2 cos�
3kya�+4 cos�

3
2 kya�

cos� 3
2kxa�. Here k� = �kx ,ky�, t=2.8 eV �Ref. 5�, t�=0.1 eV �Ref. 6�,

and a=1.42 Å. The plus sign applies to the upper ��� and the
minus sign to the lower ���� band. Right: the band structure
zoomed in on one of the Dirac points, where E	= 	�vF	k�	. The
Fermi velocity vF is constant and the electron-hole symmetry is not
broken if next-to-nearest-neighbor hopping is neglected.
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kFaG 
 1 �5�

and

�aG 
 1, �6�

where aG=1.42 Å is the carbon-carbon distance in
graphene, kF is the Fermi wave vector, and � is the surface
curvature given in Eq. �3�. The first criterion ensures that
monolayer graphene can be treated in the continuum limit
and the detailed lattice structure can be ignored. For mono-
layer graphene near the Dirac point where the relativistic
description holds kF=0 and the first criterion is always sat-
isfied. The second criterion ensures that the detailed lattice
structure is not perturbed on the curvature length scale and
the relativistic description holds true because the hexagonal
symmetry is not disrupted and because the thickness of
monolayer graphene sheet is �0�3aG, it also ensures that
�0�
1 or that the monolayer graphene sheet with nonzero
thickness can be considered a surface. Indeed, for carbon
nanotubes with typical radii 1 /��10–30 Å and for typical
surface ripples 1 /��100 Å on monolayer graphene,20 the
second criterion is satisfied too.

As a result, for monolayer graphene ��kF=0 the geo-
metric potential VG becomes dominant over the Fermi energy
EF. For example, let us consider graphene with n-type carri-
ers in the flat region where EF=0, then the geometric poten-
tial will lower the Fermi energy from the conduction band to
the valence band, EF=−	VG	. Note that as long as the geo-
metric potential is constant or slowly varying, as is the case
for ripples, this result is robust and is independent of any
quantum numbers the carriers may have �chirality and/or
electric charge�. Therefore, the curved regions will have
p-type carriers with a natural p-n junction created between
the curved and flat regions. For the surface z= f�x�, the geo-
metric potential will create p- and n-type strips where the
location, width, and polarity of each strip is determined by
the local curvature dependent Fermi energy EF�x�, see Fig. 3
and the derivation which follows.

III. CONSTRAINING THE DIRAC EQUATION

Let us consider a corrugated graphene sheet along one of
the coordinates, for example, x. We will demonstrate the con-
fining procedure leading to the appearance of a curvature

dependent potential in the Dirac equation describing the car-
riers, electrons and holes, in graphene. The confining proce-
dure starts with the introduction of an external to the
graphene sheet confining potential V� which forces the
quantum system to remain on the two-dimensional surface
thus simulating a mechanical constraint.9 This potential for
graphene stems from the Coulomb interaction since as carri-
ers leave the surface of the graphene sheet �their wave func-
tion is not strictly two dimensional� they distort the charge
balance and a potential arises which forces them back on the
surface. This potential is similar to the potential with which a
charged plate acts on a single charge above it. The properties
of V� will be introduced later.

The curved two-dimensional graphene surface embedded
in a flat Euclidean three-dimensional space is parametrized
as follows:

r��x,y� = xe�x + ye�y + f�x�e�z, �7�

where �e�x ,e�y ,e�z� is the Cartesian coordinate system associ-
ated with the embedding space, that is, the laboratory frame.

In order to derive a moving coordinate system �e�1 ,e�2 ,e�3�
associated with the surface at each point we need to differ-
entiate the parametric, Eq. �7�,

e�1 = � �r�

�x
�−1 �r�

�x
=

1

1 + f�2

e�x +
f�


1 + f�2
e�z, �8�

e�2 =
�r�

�y
= e�y , �9�

e�3 = � �r�

�x
�−1 �r�

�x
�

�r�

�y
=−

f�

1 + f�2

e�x +
1


1 + f�2
e�z. �10�

The vector e�3 is the normal to the surface at each point. The
other two vectors e�1 and e�2 span the tangent space at each
point. Hereafter f�=df /dx denotes differentiation with re-
spect to x. The moving frame �e�1 ,e�2 ,e�3� can be related to the
immobile laboratory one

�e�x

e�y

e�z

 = T�e�1

e�2

e�3

, T−1 = Tt, �11�

where

T =�
1


1 + f�2
0 −

f�

1 + f�2

0 1 0

f�

1 + f�2

0
1


1 + f�2

 . �12�

From the above two formulas we establish two important
relations to be used later in the calculations

e�x =
1


1 + f�2
e�1 −

f�

1 + f�2

e�3, �13�

FIG. 3. An n-p-n junction �transistor� formed by bending mono-
layer graphene shown in cross section. The Fermi energy is a func-
tion of the position and therefore of curvature EF�x�=−	VG	

−�vF

1
R along the sheet.
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e�z =
f�


1 + f�2
e�1 +

1

1 + f�2

e�3. �14�

Next we introduce a coordinate system of the embedding
space associated with the corrugated graphene sheet �Eq. �7��

R� �x,y,�� = r��x,y� + �e�3�x� . �15�

Here � measures the deviation from the surface in normal
direction along e�3. The metric tensor of the embedding space
can be computed according to

Gij =
�R�

�i
·
�R�

� j
, �16�

where

�R�

�x
= 
1 + f�2e�1 + �

�e�3

�x
, �17�

�R�

�y
= e�2,

�R�

��
= e�3. �18�

A straightforward computation yields

�e�1

�x
= − �e�3,

�e�3

�x
= �e�1, �19�

where hereafter the nonvanishing curvature � of the
graphene sheet is

� = −
f�

1 + f�2 . �20�

The other principal curvature for this two-dimensional sur-
face is vanishing.

In the mobile basis �e�1 ,e�2 ,e�3� the metric tensor is

G = ��2 0 0

0 1 0

0 0 1

 , �21�

where

� = 
1 + f�2 + �� . �22�

In the moving orthonormal frame the gradient operator
becomes

�� = e�1
1

�

�

�x
+ e�2

�

�y
+ e�3

�

��
. �23�

With units �=vF=1 the Hamiltonian of the massless Dirac
equation H�=E� describing carriers, belonging to different
sublattices �via the two component spinor wave function ��
in corrugated graphene is H=−i�� ·�� . Here �� is a vector con-
sisting of 2�2 Pauli matrices.

In the coordinate system �Eq. �15�� the Dirac Hamiltonian
takes the form

H = − i�� · e�1
1

�

�

�x
− i�� · e�2

�

�y
− i�� · e�3

�

��
. �24�

The wave function � is normalized according to

� �†��dxdyd� = 1, �25�

where † denotes Hermitian conjugation. The factor � in the
integration measure complicates calculations and obscures
hermiticity. We define a new wave function

� = �1/2� �26�

which has the normalization condition

� �†�dxdyd� = 1. �27�

The original Dirac equation can be recast in terms of an

energy operator H̃=�1/2H�−1/2 which acts on the wave func-
tions �

H̃ = − i�� · e�2
�

�y
− i�� · e�3

�

��
+ i

�

2�
�� · e�3

−
i

�
�� · e�1� �

�x
−

1

2�

��

�x
� . �28�

This Hamiltonian is difficult to compute with because the
matrices �� ·e� j are x dependent. The momentum operators
here are expressed with respect to the moving coordinate
system e� j while the pseudospin operators �� are expressed
with respect to some fixed rectilinear frame. To remedy this
we change the pseudospin basis through a unitary transfor-
mation ��x�,

��x��� · e� j�x��†�x� = � j , �29�

holding true for all x. Here the x dependence of the unit
vector e� j is made explicit.

To begin with, the moving frame undergoes an evolution
as traversing the x direction

de� j

dx
= �� � e� j, for j = 1,2,3. �30�

Here

�� = e�3 �
de�3

dx
= − �e�2 �31�

is a smoothly varying instantaneous “angular velocity” asso-
ciated with the evolution of the frame.

Next, we suppose ��x�=P exp� i
2�xdx��� ·�� �x���, where P

denotes path ordering along x and �� is to be determined.
This yields the following equation for �:

d�

dx
=

i

2
�� · �� � . �32�

After differentiating �Eq. �29�� with respect to x, we arrive at

d�

dx
�� · e� j�

† + ��� · e� j
d�†

dx
+ ��� ·

de� j

dx
�† = 0. �33�

Now using Eqs. �30� and �32� we obtain
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��� · �� ,� j� = 2i��� ·
de� j

dx
�†. �34�

The form we have chosen for � points to a change in pseu-
dospin basis to spinors representing carriers in sublattices A
and B �Fig. 1� in graphene’s corrugated surface described
locally by e�1 and e�2.

We write down a small computation table

��� · �� ,�1� = − 2i��3,

��� · �� ,�2� = 0,

��� · �� ,�3� = 2i��1.

From the middle equation follows �� ·�� =C�2. If we choose
C=� the above table transforms into

��2,�1� = − 2i�3,

��2,�2� = 0,

��2,�3� = 2i�1.

These relations coincide with the algebra of the Pauli matri-
ces ��a ,�b�=2i�abc�c⇒�1�2= i�3.

We define a new spinor wave function to take advantage
of this transformation

��x,y,�� = ��x���x,y,�� �35�

in addition to a new Dirac Hamiltonian H=�H̃�† acting on
�. Although this transformation replaces the � matrices as
intended, it generates a gauge term in H,

−
i

�
��� · e�1

d�†

dx
= −

1

2�
�1�� · �� . �36�

Using the above given tables we find

�1�� · �� = i��3 ⇒ −
i

�
��� · e�1

d�†

dx
= −

i�

2�
�3.

This term cancels the third term in Eq. �28�. Finally, the
three-dimensional Dirac Hamiltonian is simplified

H = − i�2
�

�y
− i�3

�

��
−

i

�
�1� �

�x
−

1

2�

��

�x
� . �37�

The transformations we have performed reduce the origi-
nal Dirac problem to the study of this perturbed Dirac
Hamiltonian in the space −�0 /2����0 /2, where �0→0, be-
tween two parallel identical corrugated surfaces 0�x�Lx,
0�y�Ly with respect to a fixed rectilinear frame �see Fig.
4�. This simplification gave rise to a variety of curvature
dependent terms in Eq. �37�.

Graphene carriers are massless only due to symmetry of
the lattice. As soon as the carriers leave the two-dimensional
world of the graphene sheet where symmetry precludes the
mass, they attain mass. Therefore off the surface in an effec-
tive treatment we cannot expect vanishing mass. Let us in-
clude an effective-mass term �1m� in the above Hamiltonian

which is three dimensional and contains information for the
off-surface processes as well.

The Compton wavelength �c=� / �m�c� sets the scale
where relativistic dynamics is applicable. For electrons it is
on the order of �c�2.4�10−12 m. Since the thickness of the
graphene sheet �0�3aG��c is two orders of magnitude
larger that the Compton wavelength for electrons, we will
treat the off-surface part in the nonrelativistic limit.9

Furthermore, according to the ideas presented in the be-
ginning of this section, we shall now consider the idealistic
spatial potential V���0 ,��, where �0 measures the squeezing
strength of this potential

lim
�0→�

V���0,�� = �0, � = 0

� , � � 0.
� �38�

For example, we can imagine a realistic harmonic binding
V���0 ,��= 1

2m��0
2�2 with �0 going to infinity which yields

��2��� /m��0 in the nonrelativistic limit.
Next we look for eigenstates of Eq. �37� in the form

��x,y,�� = �
�

���x,y�h���� , �39�

where h���� are eigenstates of the transverse one dimensional
Hamiltonian

H� = − i�3
�

��
+ �1m� + V���� . �40�

The label � denotes the quantum numbers necessary to
specify the eigenstates h���� of H� completely and physi-
cally speaking it is the “transverse energy” due to confine-
ment. The boundary conditions are vanishing �Dirichlet type�
at �= 	�0 /2. We need to take the nonrelativistic limit when
solving H� in accord with the arguments presented above.
This also overcomes the jittery behavior �due to Heisenberg
principle� of the wave function when confined in too small
an interval �0.21

The remaining two-dimensional part amounts to

H� = − i�2
�

�y
−

i

�
�1� �

�x
−

1

2�

��

�x
� . �41�

Since we have already factored out the transverse part, we
take the limit �→0 in Eq. �41�. This action is in agreement
with the standard procedure in constrained quantum dynam-
ics in the case of small �0. The smallness of �0 in graphene is
combined with the relatively small curvature of the naturally

FIG. 4. The gradual confining procedure �0→0 and the domain
where the Dirichlet boundary conditions apply for Eq. �37�.
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occurring corrugations. Thus for graphene the following ap-
plies

	��	 
 1, ��
��

�x
� 
 1, �42�

rendering the approximation

� � 
1 + f�2 �43�

justified. Indeed,

H� = − i�2
�

�y
− i�1� 1


1 + f�2

�

�x
+

��x�
2

f�

1 + f�2� .

Introducing a new variable, which is the line length along the
corrugated surface

s = �
0

x


1 + f�2dx�, �44�

instead of x and

K�s�x�� = ��x�
f�


1 + f�2
, �45�

we may rewrite H� as

H� = − i�2
�

�y
− i�1� �

�s
− VG�s�� , �46�

where

VG�s� = −
1

2
K�s� . �47�

As is often the standard approach with the Dirac equation,
it is easier to work with the square of the Dirac operator
instead of the first-order form H�2��= �E−��2��=Eel

2 ��,
where E is the total energy and Eel is the energy of the
electrons on the surface. We have

H�2 = −
�2

�y2 −
�2

�s2 −
1

2

�K

�s
−

1

2
K

�

�s
−

1

4
K2�s� .

Looking for solutions obeying the ansatz

�� = e−1/4�0
sK�s��ds���, �48�

we simplify the squared Hamiltonian acting on �� consider-
ably

H�2 = −
�2

�y2 −
�2

�s2 + V�s� , �49�

where

V�s� = −
1

16
�4

�K

�s
+ 3K2�s�� . �50�

The original Hamiltonian �46� still has positive- and
negative-energy solutions, and thus relativistic phenomena
such as Klein tunneling are present. Hamiltonian �49� with a
nonvanishing potential �Eq. �50�� possesses the usual phe-
nomenology of scattering but not bound states. Moreover,

band structure is allowed for periodic V�s�. Remembering the
geometrical origin of Eq. �50�, we may state that all of the
above-mentioned instances for graphene are of geometrical
origin including decoherence as a function of scattering and
interaction through VG.

IV. ENERGY BANDS

Let us explore a periodically corrugated graphene sheet
�see Fig. 5� parametrized as follows:

f�x� = � sin� x

a
� . �51�

Suppose �� /a�2
1 is a small parameter then the following
approximation holds true up to second order in this small
parameter 1+ f�2�1 and s�x.

For the potential V�s� we obtain

V�x� = −
1

4

�2

a4cos�2x

a
� −

3

27

�4

a6 � −
1

4

�2

a4cos�2x

a
� .

Introducing the dimensionless variable z=s /a, the s compo-
nent of the squared Dirac Hamiltonian �49� acting on a fac-
torized wave function ���y ,s�=��y���s� takes the form of
the Mathieu equation

� d2

dz2 + � − 2q cos�2z����z� = 0, �52�

where �=aks and q=− 1
8

�2

a2 . Here ks is the wave number along
the s degree of freedom. The solutions of the above are given
in terms of Mathieu functions22 and a band-gap structure
naturally emerges as a consequence of the properties of the
Mathieu equation.22 The y component of the solution obeys
the standard harmonic-oscillator equation and will not be
discussed here.

According to the Floquet’s theorem, the general solution
to the Mathieu equation is

��z� = c1e�zh�z� + c2e−�zh�− z� , �53�

where h�z� is a periodic complex-valued function with period
2� and the characteristic exponent � is a definite complex-
valued function of � and q. Here the constants ci are arbi-
trary up to c1c2�0. The characteristic exponent �= ip is
imaginary for spatially undamped solutions while it is real or
complex for spatially damped solutions.23 Spatially un-
damped solutions exist in specific regions only defined by
�=����a ,qs� ,q�a ,��� and are referred to as allowed energy
bands. There are four types of periodic solutions, even

FIG. 5. A periodically corrugated surface f�x�=sin�x�.
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z-parity cep�q ,z� and odd z-parity sep�q ,z� in two classes,
even integer at p=2n and odd integer at p=2n+1, with re-
spective eigenvalues �respectively, eigenenergies� ap�q� to
cep�q ,z� and bp�q� to sep�q ,z�. The functions are normalized
so as �1 /���0

2����z��2dz=1. At small 	q	= 	− 1
8

�2

a2 	
1,
ce0�q ,z��1,

cep�q,z� � cos�pz�, sep�q,z� � sin�pz� �54�

and ap� p2, bp� p2. These integer class periodic functions
define the edges of the allowed energy bands.

Mathieu eigenvalue equation defines allowed energy
bands at q�0 �upper-sign branch� and at q�0 �lower-sign
branch�, respectively.22,23 As q is increased, the allowed
bands get narrower turning to single levels which is not the
case here since q�0. The allowed band edges in the energy
versus q plane are described by Mathieu eigenvalues ap�q�
and bp�q�, or alternatively, by the corresponding periodic
eigenfunctions cep�q ,z� and sep�q ,z� at integer p �p
=1,2 ,3 , . . .� while the solution for each energy in the interior
of the band is generated by pairs of Mathieu functions at
intermediate noninteger p. Within an allowed band, Mathieu
eigenvalues and eigenstates are continuous functions of the
wave number k= p�, where 0� p�1 for the first Brillouin
zone.23 At q�0, which is the case here, the allowed bands
are defined as follows: �a0 ,a1�, �b1 ,b2�, �a2 ,a3�, etc.

V. INVERSE PROBLEM

We showed that the relativistic quantum dynamics of
massless carriers in corrugated graphene can be mapped on a
two-dimensional Schrödinger problem �Eq. �49�� with the
geometric potential �Eq. �50��. Now we pose the inverse
problem �for the nonrelativistic case it is discussed in Ref.
24�, namely, we may impose a prescribed potential U�s� and
solve for the graphene surface profile f�s�x��, i.e., we solve
the following third-order nonlinear ordinary differential
equation in terms of f�s� given some boundary conditions

U�s�x�� = V�s�x�� . �55�

However, here we will focus on a simpler problem. For the
constrained two-dimensional Dirac equation, where the geo-
metric potential is VG�s�x��, we can pose a similar inverse
problem for a prescribed potential R�s�,

R�s� = VG�s� . �56�

Let us answer the question which surfaces do not produce a
geometric potential, that is,

R�s� = 0 ⇒ VG�s�x�� = 0. �57�

Using Eq. �47� we can show that this is equivalent to

f�f� =
1

2

d

dx
f�2 = 0. �58�

The solution for the graphene profiles which do not produce
a geometric potential corresponds to flat surfaces only

f�x� = C1x + C2, �59�

where C1 and C2 are arbitrary real constants. Any corruga-
tion will generate a geometric potential VG�0.

VI. AN ELECTRONIC MEMBRANE

Graphene is an example of an electronic membrane apt to
gating and probing16 which adds a new perspective to the
physics of membranes.25 In this section we establish a con-
nection between the membrane aspect and the electronic
properties of graphene through the geometry induced poten-
tial VG and the Dirac equation constrained in two dimensions
�Eq. �46��. These two aspects can also be linked through the
coupling of phonon and electron modes.26 In this section we
introduce the electronic energy for the curved configuration.
To build an effective theory we introduce the bending free
energy Ebend describing an almost flat membrane in the ther-
modynamic limit27

Ebend =� dq1dq2

g�� +

1

2
 �2M�2 + !K� , �60�

where �q1 ,q2� are the surface’s coordinates, g is the determi-
nant of the metric, M and K are the mean and the Gaussian
curvature, respectively. Here � is the tension,  is the bend-
ing rigidity, and ! is the Gaussian rigidity. Besides  
�1 eV,28 � and ! are presently not known. If we neglect the
van der Waals interaction between the graphene membrane
and an external support, the resulting free energy using for-
mulas from Refs. 16 and 29 is

Ebend =� dxdy
1 + f�2�� +
1

2
 �2� , �61�

where � is given by Eq. �20�. The Gaussian total curvature
term vanishes because it is a total derivative and for a mem-
brane with a fixed topology it gives a constant �which is
neglected� according to the Gauss-Bonet theorem.30 Now, the
above expression has to be combined with the following en-
ergy functional stemming from Eqs. �39� and �46�

Eel = �
�
� dxdyd�	h����	2��

†�− i�2
�

�y
− i�1

1

1 + f�2

�

�x

+ i�1VG�x����. �62�

The coupled problem "�Ebend+Eel�=0 has to be solved self-
consistently in order to give graphene’s equilibrium corruga-
tions, which will be a function of the confined eigenstates
h���� and the strength of the confining potential V����.

VII. CONCLUSION

In conclusion, we have demonstrated that for n-doped
graphene the geometric potential VG due to confinement in
the Dirac equation for the massless carriers dominates over
the Fermi energy EF in the bent regions �where the curvature
is nonvanishing� and leads to the formation of alternating p-
and n-type regions, that is, p-n junctions of pure geometrical
origin. This may have a practical application in constructing
wavelength-specific �because VG can be tuned� terahertz
sources and solar cells based on graphene. Next, we have
derived proper constraining procedure leading to the two-
dimensional Dirac equation for the carriers in corrugated
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graphene which is in accord with the Heisenberg uncertainty
principle. The geometric potential due to confinement VG
emerges as a consequence of the quantum-mechanical prop-
erty that the wave function is three dimensional and when
constrained “experiences” the curvature of the sheet. The
inverse problem, namely, the engineering of graphene sur-
faces with prescribed quantum properties, is posed. It opens
an avenue for device engineering based on corrugated
graphene. Periodic corrugations lead to the emergence of
band-gap structure in the energy spectrum, which can be
tuned by varying the amplitude and the period of the periodic
corrugation. In general, corrugated graphene is a perfect ma-
terial with respect to geometrical effects due to the scale of
the geometric interaction VG��vF	�	, where for �

�100−1 nm−1 �naturally formed ripples� equals VG
�6 meV which is measurable. We believe that our results
will lead to experimental verification of the phenomena sug-
gested here.
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